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The dispersion of fluid particles in a turbulent flow is described by transition- 
probability density functions. A renormalized expansion is made to establish the 
evolution equations of these functions. The resulting equations are nonlinear 
integrodifferential equations written in terms of Eulerian velocity-correlation func- 
tions. For the dispersion of a single particle, the equation at the zeroth order is the 
same as the one obtained by Roberts (1961). For the relative dispersion of a pair of 
particles, the equation is more convenient for applications than those of other 
theories. With this equation, Richardson’s $-power law for relative diffusion is 
recovered analytically based upon the Kolmogoroff spectrum and numerically based 
upon the von Kkmrin spectrum and a smoothed experimental spectrum. 

1. Introduction 
The dispersion of fluid particles is the most fundamental problem in the study of 

turbulent diffusion. Started by Taylor (1921), this problem has been attacked mainly 
by two approaches. One approach follows Taylor. The moments of the displacement 
of a particle are related kinematically to the Lagrangian velocity-correlation 
functions. Because Eulerian correlation functions are more conveniently measured, 
the basic problem of this approach is the Lagrangian-Eulerian transformation of the 
velocity-correlation functions. The other approach uses transition-probability density 
functions, or briefly transition functions, to describe the dispersion. The main task 
of the second approach is to establish the evolution equations for the transition 
functions and, from a practical standpoint, to express the equations in terms of 
Eulerian velocity-correlation functions. It may be noted that, according to the 
independence approximation (Corrsin 1959), the Lagrangian-Eulerian transformation 
requires the determination of a weighting function, which is equivalent to the 
transition function (Weinstock 1976). 

The formulation for the transition functions was first discussed by Batchelor (1949, 
1952). Since the 1960s, interesting results for the evolution equations have been 
obtained by Deissler (1961), Roberts (1961), Kraichnan (1966), Saffman (1969), 
Knobloch (1977) and Lundgren (1981). These equations are generally in an integro- 
differential form and are closed by a truncation of a series of correlations. These series 
vary in form with the expansion method. Whether or not the truncation provides 
a good approximation then depends on the behaviour of the specific series. 

Recently, remarkable developments in turbulence theory have been made by 
means of expansions in terms of response functions or propagators. In  this respect, 
we may mention the series of articles by Kraichnan (1959, 1965, 1977a, b), Bourret 
1962,1965), Dupree (1966,1972), Weinstock (1969,1977). Misguich & Balescu (1975, 
1982) and Tchen (1984a, b). According to Weinstock (1969), the mean response 
functions used by Kraichnan, in the direct-interaction approximation (DIA) and in 
the Lagrangian-history direct-interaction approximation (LHDI), and the coherent 
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response function introduced by Dupree (1966, 1972) are equivalent to mean 
propagators. In  the same article, Weinstock introduced an effective propagator, 
which determines turbulent transport. The effective propagator may be expanded in 
terms of either a ‘bare ’ propagator known as the quasilinear expansion, which implies 
advection by the mean velocity, or in terms of the mean propagator known as the 
renormalized expansion (Misguich & Balescu 1975). Kraichnan (1977a, b) expanded 
the mean propagator in terms of the bare propagator, which is also a kind of 
renormalized expansion. 

The present paper uses the mean propagator to derive evolution equations for the 
transition functions. Instead of the iteration formulas given by Weinstock (1969), we 
follow the considerations of Tchen (1984a, b) to first expand the correlation, 
containing Weinstock’s effective propagator, in terms of the exact propagator. Then 
the resulting series is re-arranged and re-expanded in a series in terms of the 
mean propagator. The closure is made by a low-order truncation of the ha1  series. 
However, a discussion is given for the behaviour of the entire series. It is shown that, 
rather than the weak-turbulence and the weak-coupling limits, the approximation 
works with low-order moments of the displacements of the particles and a parameter. 
It may be noted that our expansion is similar to that of Marcuvitz (1973) for the 
leading terms. 

For the dispersion of a single particle, the equation at  zeroth order is essentially 
the same as the one obtained by Roberts (1961). However, it  is explained that this 
equation should be modified by corrections when high-order moments of the 
displacement are of interest, especially at short times. For the relative dispersion of 
a pair of particles, the resulting equation is different from those of other theories. 
Since only Eulerian velocity-correlation functions are involved, it is convenient for 
practical applications. After Fourier transformation, this equation shows the 
dominance of eddies of scales comparable to the effective separation of the two 
particles. Based upon the Kolmogoroff spectrum, the analysis shows a behaviour 
of the variance of the relative displacement, which corresponds to the +-power law 
of relative diffusion discovered by Richardson ( 1926). Numerical calculations are 
made based upon the von Karmtin spectrum and a spectrum from an experiment in 
atmospheric turbulence. The T~ behaviour is also found. 

2. Renormalized expansion 
2.1. Transition functions 

The turbulent fluid flow is assumed to be incompressible, statistically stationary and 
homogeneous. Molecular diffusivity will be neglected. Let the present position of a 
‘marked’ fluid particle be x(t) and its initial position be xo. During the time period 
T = t-to the displacement of the particle is p(7) = z ( t ) - x o .  The velocity of the 
particle can then be expressed as 

where the to dependence of 8 ( ~ )  is understood. The symbol (-) is used for a fluctuating 
quantity. The symbols C) = ( ) and (-) will be used to represent the ensemble average 
and the fluctuation of the quantity. The micro-distribution of the displacement can 
be specified by a delta function, 

pdv, I xo, t o )  = SLY- m1, (2) 
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which may be called the instantaneous transition function. The ensemble average of 
PCy, 7 I x,, to), P(y, T ) ,  is the probability density function for the particle to make the 
transition between the two states (x,, to)  and (x, t ) ,  with y = X-x,. For stationary 
and homogeneous turbulence, PCy, T )  does not depend on the initial condition (x,, to) .  
&,7) will be called the one-particle transition function for brevity. The partial 
derivative of (2) with respect to 7 leads to the equation 

[a, + VI PCV, 7 I ~ 0 ,  t o )  = 0, (3) 
where 3, = a/% and V = a/3y. For a fluid particle, its velocity is the same as the local 
Eulerian velocity, so that (3) is sometimes called the convective equation. Define the 
differential operator fr(7) = 8(7) V. Then (3) is turned into the Liouville form 

[a,+Q7)1 = 0, (4) 

where the spatial dependence of P is implied. The evolution equation of the transition 
function P i s  to be established by averaging (4) over all realizations. 

Similarly to (54), the equation for a pair of marked fluid particles can be written as 

[a, + h2(7)1 fh (7 )  = 0, ( 5 )  

with frle(7) fr1(7)+&(7) = 81(7)'V1+82(7)'V,, 

and p12~ = P 1 2 ~ 1 , ~ 2 ,  7 Ix10, ~ 2 0 ,  t o )  

P ~ S , C V ~ , ~  Ix10, t o )  P~,CY,, 7 Ixm to ) .  

The subscripts 1 and 2 are used to distinguish the two particles. The ensemble average 
of p12 is the two-particle transition function for the two states ( X ~ ~ , X , , , ~ ~ )  and 
(xl, x,, t ) ,  with y, = x1-xl0 and y, = x,-x,,. For stationary and homogeneous 
turbulence, eB does not depend on either xl0 or x,,, but on the initial separation 
r, = x,, - xl0. Therefore it is written as 

U ~ 1 , ~ 2 , 7 I r o , t o )  = ( ~ 1 2 ~ ~ 1 , ~ 2 , 7 1 x ~ ~ , ~ , , , t 0 ) >  = P T , C Y ~ , Y ~ + ~ ,  71'0, t o ) ,  

f ( 7 )  = P,(7)- q ( 7 ) .  
where 1 refers to the relative displacement such that 

Then the relative transition function, specifying the relative displacement, is defined 

General properties of these transition functions and discussions based upon 
dimensional reasoning can be found in Batchelor (1952), Roberts (1961) and Monin 
& Yaglom (1975). The following properties will be used frequently: 
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FIGURE 1.  Trajectories of a pair of particles, 

2.2. Renormalized expansion 
The ensemble average of (4) yields 

- -  
(a,+L)P = c= -(zP), 

where L and P &re the fluctuations off;  and P respectively. The evolution equation 
of P is to be established by expressing c explicitly in terms of P and velocity- 
correlation functions of the fluid flow. For this purpose, (1 1) is subtracted from (4) 
to give 

The procedure is to solve for P from (12) and to substitute the result into 17, 
(a,+L)P = -EP+(EP). (12) 

The exact propagator is introduced for (12), defined by 

and is called the exact propagator because the velocity contained in f, is the exact 
velocity possessed by the particle (Weinstock 1969). Note that 7 refers to the 
transition time t--to, so that 70 = 0. P is then formally found from. (12) and sub- 
stituted into (1 l) ,  yielding 

c= (ZO*Z)P-(LB) *(LP), (14) 

where the star is used to represent a time integration, e.g. 

<Eo*e)p= rd7’(E(7) 0(7,7’)E(7’))&’), 

and the initial fluctuation P(0) is neglected as usual. The mean propagator is 
introduced as the deterministic part of 0, 0 = (O), to get rid of the stochasticity 
in 0. Equation (12) can be written in other forms. Accordingly, UO, the bare 
propagator, and A, the effective propagator (Weinstock 1969), can be introduced. 
Weinstock derived iteration formulas relating A and 0 to UD, 0 and 0. However, 
with the effective propagator, (14) is written as 

0 

c= (LA*E>F, (15) 

which is of major interest. Following Tchen (1984a, b), we first expand (14) in terms 
of 0. Then the resulting series is rearranged and re-expanded in terms of 0 only. 
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Essentially the series is an expansion of the correlation with A, (15), but not 2 itself. 
The procedure and the main results are as follows. 

As in (11) and (12), one can obtain equations for Uand d by averaging (13) : 
_ -  

(a,+L) u= IT= -(ED), (16) 

(a,+€) o= -EU+(Lo>, (17) 
such that 

O= - O*EU+ O* (E8) = - V*EU- O*EU+ U*<CD)+ U*<Eo>,  

a= (LO*€) U-(Eo> *(Lo>. (19) 

(18) 

Define cs = (EO*E)F, ITs = (EO*Z) u. 
Then (14) and (19) can be written as 

B = Bs - IT* 6, 
a= as-a*a. 

These two equations are analogous to those given by Tchen (1984a, b) using a kinetic 
approach. By means of (20) and (21), c i s  expanded in terms of as and Bs: 

with the condition that the norm of as * satisfies 

llRs*ll = II(f;O*Z)U*II <a .  
This condition is estimated in a way similar to that used by Knobloch (1978), and 
is given explicitly in $2.3. Next, (?.. and as are written as 

cs = co+(Eu*E)F, ITs = a,+(eO*E) 0, 
with Go = (EV*E)F, Ir, 5 (EU*Z) u. 
Rearrange series (22) with the new forms of cs and ITs. The resulting series appears 
in a form which is conveniently expanded to get the final expansion of 0 in terms 
of uonly. Unfortunately, unlike the series in (22), the general term has not yet been 
found. The leading terms are 

c= c0+c3+c4+..., 
with 
- c, = (E77*Z)P, 
c3 = -(E77*E77*E)B, 
c, = (En * ET * EJ7 * E) P -  (El7 * (En, E) T * Z) P -  (El7 * E) 77 * (E77 * E) P,  
- 

where the subscript of c, refers to the number of contained in the term. C, has 
a second-order correlation, but refers to the zeroth-order approximation. Higher-order 
terms are very complicated. The terms up to the eighth-order are given by Jiang 
(1984). 

2.3. Closure 
Like the typical problem in turbulence study, the series (24) implies a hierarchy of 
correlations of increasing order. The closure is made by an arbitrary truncation. 
Nevertheless, aa mentioned by other authors, the renormalized expansion produces 
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a series that behaves better than the one obtained by the quasilinear expansion. The 
following discussion is given to estimate the conditions for a low-order truncation. 

In  the short-time limit the velocity of the marked fluid particle is approximately 
the same as its initial velocity. With the condition that the turbulence is stationary 
and homogeneous, it can be easily shown that all the odd-order moments of the 
displacement of the particle are approximately zero and that an even-order moment, 
say the 2nth, is contributed by the even-order terms in (24) up to the 2nth. It can 
also be shown that, although smaller, all these even terms contribute to the 2nth 
moment with the same order as that of Go = (Eu * E) P.  By comparison of the result 
with that of the kinematics of the particle, it can be shown that a low-order truncation 
is not good when high-order moments are of interest, no matter how weak the 
turbulence is. Therefore a low-order truncation, a t  short times, only applies to the 
case where low-order moments are to be investigated. 

At long times, several approximations may be applied to simplify the series (24). 
First, the correlations in (24) contain multiple space-time points. In  the spacetime 
integrations implied in the operations of U*,  one or several points could be away 
from other points with a high probability. Therefore the odd-order terms may be 
neglected in comparison with the even-order terms. Secondly, the series (24) contains 
correlations in all possible forms. The terms containing ' non-neighbouring ' correla- 
tions may be neglected because of the restriction of the correlation time and length. 
For example, (Ln * (En * * E) P has a correlation separated by 
another correlation of the fourth order. It may be neglected in comparison with 
(En * E) n * (En * E) n * (Ln * E) P.  Since the full expression for (24) is very 
complicated and no general form of the terms has yet been found, a further 
approximation is needed. The terms up to the eighth order are reduced by the fist 
two approximations. A general term can be found from these reduced terms. We then 
assume that the general term applies to the whole series. The result is 

* ED * E) 

- 
with c, = (EU*E)P, 

e2 = LU*EP, ) (26) 
- 
C2(r+l) x (LT*E?7* (C2(-c2()> (i = 1,2,3, ...). 

The norm of En * Ev * is approximately the same as that of Hs *. However, because 
of the outer brackets (ensemble average) of the common term C',z(t+l), the series (25) 
converges faster than does the series (22) when condition (23) is satisfied. Therefore 
at long times a low-order truncation of (24), or (25), is a good approximation. 

A discussion for intermediate times does not seem possible at present. In  the rest 
of this paper, we assume that a low-order truncation applies to all times based upon 
the discussion of the short-time and long-time cases and the fact that low-order 
moments of the displacement of the particle are of the most practical interest. For 
the second moment, the resulting equation is 

(a,+€)P = (LB*L)P. 

Correction terms should be added when higher-order moments are involved. The 
third-order correlation, as a correction, was discussed by Weinstock (1976) for a 
related subject, the Lagrangian-Eulerian transformation of velocity-correlation 
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functions. However, for the evolution equation of the transition function, c4 is more 
important than C,. We suggest that the first correction is 
- c, = (€27 * LU * EU * E) P -  (EiJ * (ED * Z) 77 * E) P -  (ED * It) 77 * (ZiJ * E) P 

= (~iJ*EU*~U*E)(1,3;2,4)P,  (28) 

where the symbol (1, 3 ; 2,4) means that the fourth-order correlation is decoupled into 
two pair-correlations, the first E with the third and the second E with the fourth. 
The second step of (28) is made so that the second moment of the Eulerian velocity 
field can be applied, similar to the approximation made by Bourret (1962). 

The equation for the transition function of a pair of marked fluid particles can 
by analogy be obtained from (5).  The result is, for the second moments of the 
displacements, 

where D12 is the mean propagator of the two particles, respective to the two-particle 
exact propagator. 

Equations (27) and (29) are not restricted by the weak-turbulence and the 
weak-coupling limits. The condition can be estimated by means of (23). The operation 
of B * implies a temporal integration, and the spatial derivative in E operates on P,  
which is implied in U .  The condition (23) is then estimated by the magnitudes, 

w = 11 Rs * 114 = (iiii”)tTL/YL < 2, (30) 

where ( i i 2 ) 4  is the r.m.8. velocity, TL is a Lagrangian time-scale and 2, is a 
Lagrangian lengthscale over which, from the present position of the particle, P has 
a significant change. This condition is comparable to that suggested by Knobloch 
(1978). 

3. Dispersion of fluid particles 
3.1. Dispersion of a single particle 

The exact propagator restricts its operand to be evaluated along the trajectory of 
the particle. Such an operation can be mathematically replaced by a spatial 
integration weighted by a delta function. By means of (2), we can write 

O(7,7’) F(7’) = dy’ BCy-y’, 7-7’ Id, t’)PCy’, 7’) ,  s 
U(7,7’)P(7’) = dy’PCy-y’, 7-7’)FCy’, T’ ) ,  (31) s - 

so that 

where F is a quantity carried by the particle. This equivalence is shown in detail in 
the Appendix. Recall that the velocity of the particle is the same as the local Eulerian 
velocity. By means of relation (31), the evolution equation (27) for a single particle 
is written explicitly as 

In  (32), is the mean velocity, V = a/ay, V‘ = a/ay’ and 

RCy-Y’, 7-7’)  = (W+x,, 7+t0)SCy’+X0,  ++ to ) )  

11 FLM 155 
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is the Eulerian velocity-correlation function. The correction term (28) is found as 

where the subscripts refer to the components of the respective vectors. The 
summation convention in (33) will be used throughout the paper unless noted. 
Equation (32) is essentially the same as the one obtained by Roberts (1961)’ so that 
only some remarks will be given. General properties of the one-particle dispersion can 
be found in the paper by Roberts. 

The second moment of the displacement can be found to  obey 

by means of (32). On the other hand, as considered by Roberts one may apply a 
memory cutoff to (32) to get a diffusion-like equation. Replace V‘F(y’, 7’)  by V&, 7) .  

The result is 

(a,+ P O  v) F(y, 7 )  z v - ~ ( 7 )  vF(y, 7 ) .  (35) 

The interesting point is that  the expression for the eddy-diffusivity tensor K(7) is 
exactly the same as (34). It is well known that one-particle dispersion is nearly 
Gaussian a t  all times and Taylor’s (1921) formula can be used as the eddy diffusivity. 
Equations (34) and (35) provide added support for the Gaussian approximation. The 
Fourier transform of (34) for isotropic turbulence and the Gaussian approximation 
give 

d 4 7 )  4 co 

d7 0 
- = 8J:d7’J dkE(k,7’) exp[-+k2a2(7‘)], 

where a2(7) is the one-dimensional variance of p(y, 7) .  This equation will be used later. 
Here and after, any function, with the argument k, refers to its Fourier transform. 

The correction (33) should be added when higher-order moments of P a r e  involved, 
such as in discussing the flatness of the profile of p. It can be shown that with (33) 
the fourth cumulant of p is approximately zero in the short-time limit and at long 
times. The departure of P from Gaussian happens mainly at short times. The profile 
of P is generally steeper than that of a Gaussian approximation, and the vorticity 
spectrum plays an important role (Jiang 1984). 

3.2. Relative dispersion of a pair of particles 
I n  a similar way to the one-particle case, the two-particle mean propagator can be 
related to  the two-particle transition function : 



+V2-JOd7’ J Jdy;dy;R(y,-y;, 7-77 

xFla(yl-y;, y2-y;, 7-7’ I r’, t’)*v;lF1,,Cv;, y;, 7’1 ro, t o ) ,  (37) 

where V, = a/ayl and V; = a/ay;. Transform (37) into the (yl, I)-coordinate system 
and integrate the resulting equation with respect to y, to get 

a , m ,  7 I ro9 t o )  

= V,-~:d~’~jdy’dd’  [2R(y’, 7--’)-R(y’-1’-ro, ~ - ~ ’ ) - R ( y ’ + 1 ’ + r ~ ,  T - T ’ ) ]  

where V, = a/aA and V; = 3/31‘. It should be noted that, although subscripted by 
- 1 and 2, the two particles are not actually distinguishable. Therefore 
P12(y’, y’+A-I‘, T - T ’ I ~ ’ ,  t’)andF12(y’+1’-1,y’, 7-7’1 -r’, t’)canbetreatedasthe 
same when they appear in the intermediate steps of the derivation, as the result of 
interchanging the two particles. Equation (38) is the equation governing the relative 
dispersion. 

As mentioned by other authors (Batchelor 1952; Roberts 1961), the dispersion of 
a single particle is dominated by large eddies and the relative dispersion of a pair 
of particles is dominated by small eddies. Before the separation of the two particles 
becomes comparable to  large scales, the two dispersion processes, which compose the 
two-particle dispersion, may be assumed independent of each other. Then (38) can 
be further reduced to 

xFl2(y’,y’+I-1’, T - T ‘ I ~ ‘ ,  t’)*V;E(A’, 7’lr0, t o ) ,  (38) 

a, 4 4  7 I ro, t o )  

xF(y’, T - T ’ ) B ( 1 - 1 ’ ,  7-7’1rt, t’)’V:,B(A’, 7’1ro, to).  (39) 

In principle, when the Eulerian velocity-correlation functions are given, F can be 
solved from (32), and then B can be solved from (39). 

Equation (38) appears to be similar to the one obtained by Roberts (1961). 

11-2 
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However, in our equation, P12 accounts for the coupling of the two trajectories, so 
that the main feature of the relative dispersion is retained. Since only Eulerian 
velocity-correlation functions are involved, our equation is convenient for practical 
applications. Like other renormalized expansions, the Galilean invariance can be 
shown to be satisfied, which was emphasized by Lundgren (1981) for the relative 
dispersion. It is interesting to note that a memory cutoff of (38) or (39) would lead 
to an equation having the same physical meaning as that of the equation derived 
by Kraichnan (1966). However, for the case that the two particles are initially close 
to each other, the memory effect is strong. Therefore the memory cutoff will not be 
considered. 

3.3. Properties of relative dispersion and Richardson’s $-power law 

In  the short-time limit (38) can be approximately written as 

a,E(A,71r0,t0) x [2R(0,0)-R(-r0,0) -R(r0,0)] :V,Jod7’  JdA’ 

xE(A-A’,  ~ - ~ ’ l r ’ ,  t’)viB(A’, 7’1ro, to) .  

By means of this equation, the second moment of the relative displacement of the 
two particles is found to obey 

x 2[2R(O,O)-R( -ro,O)-R(r0,O)]. 

Recall that r = l + r o .  The variance of the separation of the two particles is found 
as 

( ~ ( 7 ) )  = r: + ( P ( 7 ) )  
x r ~ + [ 2 R ~ , ( 0 , 0 ) - R R l i ( - r o , 0 ) - R R i ~ ( r o , 0 ) ] 7 2  

where e is the energy-dissipation rate and u is the kinematic viscosity. In the last step 
of (40) the relation 

8 m 

2R~~(0,0)-RR,,(-r0,0)-R, i (ro,0)  x r,r,:VVR(O,O) = r : : j  dkk2E(k) = -r: 
0 3v 

has been used, with E(k)  = the energy spectrum. When the initial separation is small 
enough, (40) indicates that the two particles move almost together at short times. 

In the long-time limit the relative displacement has a high probability of taking 
large values, so that the correlations R(y‘ - 1‘ - ro, 7 - 7 ‘ )  and Re‘ + A‘ + r,, 7 - 7’ )  can 
be neglected in comparison with R(y’, 7-7’ ) .  By a Markovian approximation, which 
can be tolerated at long times, (39) leads to 

~ T ~ ( 1 , 7 ~ ~ o , ~ o )  x 2 K ( ~ ) : V , V h B ( 1 , 7 1 r o , t o ) ,  (41) 

where K(m) = d7’R(y’, 7’ )  p(y’, 7’)  r 
is the asymptotic eddy-diffusivity tensor for a single particle. Equation (41) indicates 
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that, in the long-time limit, the two particles move independently of each other. The 
second moment of the separation is 

(7(7) F(7)) x (11(7) X(7)) x 2K( co) 7. 

A t  intermediate times, we study the second moment of the relative displacement. 
It is found that 

d<X(7) ’(‘)) = 2 d7‘ dy’ dl’ [2R(y’, 7 - 7 ’ )  - R(y’ - 1’ - ro, 7 - 7’) 

-Rw’+A’+r0, 7-7‘)]&’, T-T’)B(~Z’, T’II‘o, to ) .  
d7 s, ss 

(42) 

If the turbulence is also isotropic and yo is small enough, the Fourier transform of 
(42) yields 

00 du 7 
= 3 2 1 ~ ) ~  [ d7’ dk  E(k,  7 - 7’) p(k, 7 - 7’)  [ 1 - ( 2 ~ ) ~  B(k, T’)]. (43) 

d7 0 0 

Batchelor (1952) and Obukhov (1959) suggested a Gaussian approximation for the 
relative dispersion and that B obeys the diffusion equation : 

a,B(j2,7) = K ~ ( ~ ) : V ~ V , J ( ~ , T ) .  

The eddy diffusivity K’(7) can be defined by Taylor’s formula 

and expressed explicitly by means of (42). It follows that 

-- d‘’(7) - :J:dr’JmdkE(k, 7-T’)exp [-+k2u2(7-7’)]{1 -exp [-&2ui(~’)]}, (44) 
d7 0 

where u2(7--7’) and ~ ‘ ( 7 ’ )  are the one-dimensional variances of &’, 7-7’ )  and 
E(l’, 7’ )  respectively. In  a time period, eddies of large scales do not contribute much 
because of the factor 1-exp[-@2u~(~’)]. Eddies of the smallest scales do not 
contribute either, because of the factor exp [-4k2u2(7-7’)]. These facts show that 
our equation preserves the characteristic of the relative dispersion that it is 
dominated by eddies of scales comparable to the effective separation. Note that K’(7) 
cannot be obtained by a memory cutoff of (38), unlike the case of a single particle. 

For an analytical discussion, we write (44) as 

dkE(k){l-exp [-+k2uf(7)]} 

-is,” dkE(k){l-exp [-+k2c2(7)]}{i -exp [-+k2ui(7*)]}, (45) 

where 0 < T* < 7 and the mean-value theorem of integration has been applied. At  
intermediate times, the second term on the right-hand side of (45) is relatively 
unimportant, so that 

d2ui(7) W 

- N 8 s  dT2 N g  dkE(k) (1 -exp [ - + k 2 c ~ ( 7 ) ] ) .  

Based upon the Kolmogoroff spectrum E ( k )  = C’dk3 ,  uI(7) can easily be found. The 
result is 

a$(.) x 0.6065C‘k~~, (47) 
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where C’ is the Kolmogoroff constant. The eddy diffusivity for the relative dispersion 
is 

1 daf(7) 
2 d7 

F(7) = $&$(7) = - - 

w 1 .8195C‘1m2 x 1 .2697C‘ki[aA(7)j$. (48) 

Relations (47) and (48) correspond to  Richardson’s +-power law in Batchelor’s (1952) 
version. 

The Kolmogoroff spectrum is for the inertial subrange. It will be more interesting 
to test (44) with a spectrum for the whole range. I n  the numerical calculation, based 
upon (36) and (44), we have used the von Ktirman spectrum and a spectrum smoothed 
from an  experimental spectrum. The von Karmain spectrum is 

Yk4 
[ 1 + (k/kJ2]: ’ 

E(k) = 

where 9 is the Loitsanski integral and k, is a parameter with the dimension of a 
wavenumber. It has the advantage that both the empirical k4 portion at small 
wavenumbers and the k-8 portion a t  large wavenumbers are included. The semi- 
empirical spectrum, in dimensionless form, is 

79.35k4 exp (-5k) (0 < k < 1.1429), 

0.6665k-3 (1.1429 < k < 2.8571), 
0.08165k-1 (2.8571 < k < 71.429), 
1.4056k-! (71.429 < k < 1079.1), 

326.61k-2.447 (1079.1 < k < 28571), I 0 (28571 < k).  

E(k)  = 

This spectrum is smoothed from the v-component of spectra measured a t  10 m height 
in the atmosphere by Mikkelsen (1983, figure 4.12b). The dimensional factors are 
k, = 3.5 x m-l for k and (9)/2k, for E(k). For the two spectra both the variances 
of the displacement of a single particle and the relative displacement of a pair of 
particles are calculated. The results based upon the von KarmBn spectrum are plotted 
in figure 2. The semiempirical spectrum is shown in figure 3, and the results based 
upon the semiempirical spectrum are shown in figure 4. The curves for af(7) in the 
two figures both show a r3 slope, which corresponds to the $-power law. 

Because of the nonlinearity of (39) and the dependence of &4-2.’, 7-7’ [ r’, t ’ )  on 
(r’, t ’ ) ,  the discussion of the relative dispersion can be made only with known models 
of the relative transition function. We have also applied (43) to the model suggested 
by Richardson (1926) and the one suggested by Okubo (1962). Both models have the 
diffusion equation 

However, in Richardson’s model 

@ A ,  7 )  = 4 7 )  exp [ - b(7) T )  hf], 

with 

In Okubo’s model &A, T )  = 4 7 )  exp [ - b ( 7 )  At],  
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FIQURE 2. Variances of the displacements baaed upon the von Khrmhn spectrum. 

with 

The results, based upon the Kolmogoroff spectrum, are 

4 ( 7 )  x 0.5112C'k~~, 

K'(h, 7) x 0.4771C'h&i 

for Richardson's model, and 

a!@) z 0.5815C'!d, 

K'(h, 7) x 0.6576C'dAk 

for Okubo's model. These results are comparable to those obtained by Kraichnan 
(1966), Lundgren (1981) and Misguich & Balescu (1982). It may be noted that, 
according to Sullivan's (1971) experiment, the Gaussian approximation seems better 
than Richardson's model. However, if Okubo's model is plotted on the same figure, 
it  would show a better agreement with the experiment. 

Although the Gaussian approximation has limitations, it  may have practical 
applications. The behaviour of the relative dispersion in the short-time limit and in 
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10-3 10-2 10-1 1 10 

k (m-1) 

FIGURE 3. Semiempirical spectrum : 

1 . 0 1 7 7 ~  1014k6exp(-5000k/3.5) (0 < k d 0.004), 

5.5 x 10-6k-2 

0.02183k-f (0.25 < k G 3.777), 

(0.004 < k < 0.01), 

, kE(k) = 5.5 x (0.01 < k < 0.25), - 1  0.06155k-1.447 (3.777 < k < 100);  

w, experimental w-spectrum (Mikkelsen 1983, figure 4.12b). 

the long-time limit can be recovered by the Gaussian approximation, basedupon (44). 
The discussion of fluid particles may apply to the diffusion of a passive scalar. The 
previous results, based upon the semiempirical spectrum, are shown (Jiang 1984) 
to be quite comparable to the experimental smoke-diffusion data that were obtained 
by Mikkelsen (1983) under conditions similar to those when the velocity spectra were 
measured. 

4. Discussion and conclusion 
Turbulent transport is always accompanied by the random motion of fluid 

elements. Because of this fact, the recently developed expansion methods have 
obtained remarkable successes in turbulence theory. The present paper uses the mean 
propagator for a renormalized expansion. The mean propagator is the deterministic 
part of the exact propagator which specifies the trajectory of the fluid particle. 
Therefore the intrinsic nonlinearity and the Lagrangian nature are included so that 
the expansion provides a good approximation at a low-order truncation when 
low-order moments of the displacements of particles are to be investigated. Both (32) 
and (39) are in real space and in terms of Eulerian velocity-correlation functions, 
so that they ar6 convenient for possible applications. 

In the derivation of the equations for the dispersion of a pair of marked fluid 
particles, the two-particle mean propagator has a meaning similar to that of the 
' three-point Green function' introduced by Weinstock (1977) for the triple-velocity 
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< fi =>yo7 
FIGURE 4. Variances of the displacements based upon the semiempirical spectrum. 

correlation of turbulent flow. Instead of the conventional (G).(G), ours is like a 
Green function G, = ( G - G ) .  The former appeared in the DIA, so that the equation 
derived by Roberts (1961) did not describe the relative dispersion properly. 

It is also interesting to note that (44), based upon the Gaussian approximation, 
is comparable to the equation given by Sawford (1982) for the two-particle Lagrangian 
velocity-correlation function and the one obtained by Mikkelsen (1982) for the 
relative diffusion of Gaussian puffs. However, our equation contains a time convolution 
which couples the variance of the relative displacement of the two particles with the 
variance of the displacement of a single particle. In  view of the structure of the 
two-particle two-time Legrangian velocity-correlation function, it seems more 
reasonable to have such a coupling. 

The author is indebted to Professor C. M. Tchen, City University of New York, for 
suggesting the subject and for his guidance. The author is thankful to Professor 
W. J. Pierson, Institute of Marine and Atmosphere Sciences, City University of New 
York, for valuable discussion. The author is grateful to Dr T. Mikkelsen and the Riss 
National Laboratory of Denmark for their permission to use the experimental 
spectrum. 
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Appendix 
The meaning of the exact propagator was examined by Weinstock (1969). Any 

physical quantity carried by the fluid particle, such as its mass, will obey an equation 
similar to (3) : 

where the spatial dependence of F is implied. The present distribution of F can be 
related to its initial distribution by means of the exact propagator: 

[a,+f~(7)] F(7)  = 0, (A 1) 

F(7)  = 0(7,70) F(70). (A 2) 

When this expression is substituted into (A l ) ,  we see that 0 obeys the equation 

[a,+ fi(T)] 0(7,70) = 0, 

because both a, and E(T)  do not operate on F(70). It is also obvious that Q(‘T~,  T ~ )  = 1, 
according to (A 2).  

For the inhomogeneous equation, explicitly in (y, 7)-coordinates, 

[a,+ a(7) * Vlfdv, 7) = OW, 71, (A 3) 

the exact propagator can be shown to relate to a delta function. The Fourier 
transformation of (A 3) yields 

[aT+ik-6(7)]f((k,~) = g”(k,7). (A 4) 

Therefore 

f(k, 7) = g”(k, 7’) exp [ - 1, d7” ik. 0(7”)] 
0 

= r d.z’g”(k, 7’) exp { - ik * [ P(T) - p(7’)]}, (A 5 )  
J o  

with the initial conditionf(k, 70)  neglected as usual. However, (A 5) can be inversely 
transformed to give 

The exact propagator works as a Green function. Formally, (A 6) can also be written 
as 

f(7) = d7’ 0(7,7’) 9”(7’), 
0 

with the initial conditionf(f(.r,) neglected. We see that 0(7,7‘) corresponds to the inner 
integration of (A 6) with respect to y‘. Recall the definition of the instantaneous 
transition function (2). Equation (A 6) is then written as 

Therefore we have the equivalence 

~ ( T , T ’ ) ~ ” ( T ’ )  = dy’p(y-y’, 7--7’(x’, t ’ )g”(y’ ,  T ’ ) ,  s 
s U(7,7’)9”(7’) = dy’P(y-y’, 7-7’)g”dy’, 7 ’ ) .  
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